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Earlier results for coherent propagation of light in correlated random distributions of dielectric particles of radius
a (with minimum separation b 2- 2a small compared with wavelength A = 2r/k) are generalized to obtain the re-
fractive and absorptive terms to order (ka )2. The present results include the earlier multiple scattering by electric
dipoles as well as scattering and multipole coupling by magnetic dipoles and electric quadrupoles. The correlation
aspects are determined by the statistical-mechanics radial distribution function f(R) for impenetrable particles
of diameter b. The new terms for slab scatterers and spheres involve the integral of JR (first moment) or off In R
for cylinders. The new packing factor is evaluated exactly for slabs as a simple algebraic function of the volume
fractIon a. and it is shown that the bulk index of refraction reduces to that of one particle in the limit It = 1. A sim-
ilar result is achieved for spheres in terms of the Percus-Yevick approximation and the unrealizable limit u = I.

INTRODUCTION obtain both the Wi and V integrals from our earlier Laplace
transformation14 of the exact Zernike-Prins result"2 for f. For

Earlier papers developed simple forms for the coherent bulkfor to consider
index of refraction (1 ,') for correlated random distribu- somers, e propete A'.tions of dielectric particles with minimtim separation (b) of some of the properties of A¢.

tions o deratin In the following, for brevity, we use, for example, form (4:
centers small compared with wavelength (X = k/27r). Writing 113) to indicate Eq. (113) of Ref. 4, as well as essentially the
the index as q = q, + i I, + i q_ we applied general scattering same notation as before.'- 4 We generalize the earlier multi-
theory :'.4 to the range of small kb to obtain results for the re- pie-scattering electric-dipole approximations for ) 2 = given
fractive (r,) and absorptive (7) terms that were explicitly collectively in form (1:44) by including scattering (and mul-
independent of A and to obtain corresponding results for the tipole coupling) by magnetic dipoles and electric quadrupoles
scattering (r?,) loss term to lowest order in A. The explicit trpee up lin detic Foles and be= 2adrum
approximations2 for 77, and pl0 for spheres, cylinders, and slabs (for spheres and cylinders). For slabs and b = 2a (minimum
(m = 3. 2. 1. respectively) depended only on the particles' separation of slab centers equal to slab thickness)1,the explicitradius or half-width (o), their complex index of refraction (r. approximation for rp2 = reduces toe -e'dif w 1, as required

from physical considerations: The particles occupy all space.
= , i7), and their average number (p) per unit volume; they The limit i t 1 is not realizable for identical spheres, and we
exhibited the statistical aspect of the problem only in the take u, : Ud 0.63, with Wd as the densest random packing
volume fraction it, = p'. with t, = I(a) as the volume of one introduced earlier" 7 to define the amorphous solid. How-
particle. The corresponding scattering terms )7, were addi-

ever, our explicit approximation fore for spheres also reduces
tionally dependent on (ka)m and on the low-frequency limit to (' as u reduces to 1; we regard this as consistent with the
of the structure factor WI'W), with W = pt(b/2) = u(b/2a)m approximations involved in scaled-particle6 and Percus-
as the volume fraction of impenetrable statistical particles Yevick ' -., statistical-mechanics theory and with the closure
with diameter b a 2a, i.e., in general, each dielectric particle approximation used in the multiple-scattering theory.3.4 For
was visualized as having a transparent coating of thickness cylinders, we take u < I' - 0.84, as before.' Were an anal-
(b/2) - a. The present paper applies the general theory :

3
,4 to ogous closed form available f0r the -integral for this case,

derive the leading -dependent terms of r, and %; these de- ogould form a e orte n -ingra for cs
pendexpicily n (a)2andalbforallcass ad o apro- we would expect the corresponding approximation for f to

pend explicitly on na/ cn appro- show the same behavior for the nonrealizable limit It 1.
priate correlation integrals A'(w). The present application of the general theory'', to larger

The correlation aspects of the distribution that we consider kb than beforei 2 plus the recent applications' to large kb

are determined by the statistical-mechanics radial distribution provide simple forms that explicitly display the functional

function" f(R) for impenetrable particles and are exhibited pendence o all epram t s ay practial

explicitly as simple integrals over all R of the total correlation capions. T n tes ranes o mbn e rate achi

function F = f - 1. The integrals for spherical and slab computations are no longer required, and the results help to

particles are of the form f FR"dR (moments of F), but cy- delineat he o fundamental physical proceess.

lindrical particles also involve f F(In R )dR. These can all be

evaluated numerically from existing statistical-mechanics
results or approximations-" " for f. We obtained explicit PRELIMINARY CONSIDERATIONS

closed-form approximations before' 7 for the integrals that For a slab-region distribution and a normally incident wave
arise in the II' set and also used the required N integral for Oe-1'1 (representing either the electric or the magnetic
spheres in a related development"' for large kb; for slabs, we component) we write
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e= e z, 
6- = 0, k = 2r/\ = 2rm/,X, (1) ix 3

(f' - 1) x 23(2 - 01) x62(' - 1)2
a i .... 1 (8)

with 17e as the index of the embedding medium. The corre- E' + 2 [ 5(W + 2) j 3(W + 2)2

sponding bulk coherent propagation coefficient where the next terms are of order ix
7 and x 8 . The corre-

K = k b/, 
= k)p, q2 =(2) sponding magnetic dipole (a IM) and electric quadrupole are,

respectively,

is to be expressed in terms of p and F for pair-correlated ix,5(f' - 1) ix(( - 1)
particles specified by their isolated scattering amplitudes g(, aiM 30 , a 2  + 3) (9)
2). The normalization for g is such that for lossless parti- 30 6(2' + 3)
cles where the next terms are proportional to ix7 , ix 9, and x 10.

The resulting amplitude for Rayleigh's approximation (6) is
-Re 'g(2,2) = -Reg = .jf g(t, j)1 2 ,  (3) g t a1 + aiM + a 2. (We use an, aiM for the earlier 4 bn,

with . Has the mean over all directions of observation k. The c1 .)

corresponding known 19 scattering coefficients an (which may For cylinders 19 and polarization transverse to the axis, we
represent two sets) are normalized by the form have g - ao + a 1 + a 2 with dominant dipole

g= an, an = an (6X), E' = pe, x ka. (4) Q~ 1i*X2(f-1) x 2 [3 + ( - 4(f' - 1)L]
2gaW + 1) ji1 8(W +1)

In addition to the dependence on c' (the relative dielectric x 4
r

2(E' - 1)2

parameter) and on x (the normalized radius or half-width), 8(c + 1)2 , (10)

the coefficients depend on the dimensionality (m) of the
problem and on the choice of field component for m = 2 (i.e., where L = ln(2/xc') with c' = 1.781 ... The next terms are

on whether the electric polarization is lateral or transverse to of order ix
6 and x 6 . We also retain

the cylinder's axis). We obtain results for the bulk relative i 7rx 4(( 1) iirx
4
(f _ 1)

dielectric parameter ( in the form a0 32 , a 16(W + 1) ' (11)

,= + f, + j, = 6 1 + x
26C + ixmC,, (5) where the next terms are of order ix 6

, ix 8 , and x8. For cylin-
ders and polarization along the axis, we use g - ao + a1 ,

where the set 6 is independent of x = ka. The forms for 61 with

and 6,' corresponding to multiple scattering by electric di-
poles, were discussed before1 2 in detail. Now we obtain irr2('- 1)f 1 [ 3 -(- 1)4L]

. 4[ f 8 1

From Rayleigh's results for spherical dipoles,20 the first x 4
7r

2 (f - 1)2

approximation for sparse uncorrelated distributions corre- (12)
sponds to 16

where the next terms are of order ix 6 and x 6 . In addition, we
i47rp i4p i2p keep

17R 1 = -cg2, = = pR2; C = -, , -. (6)
k 3  

k
2  k a, i7rx

4
((' - 1)/16 (13)

In first of the papers cited in Ref. 1, for lossless small c' = 1, and ignore ix 6, ix8, and x 8 terms.
we multiplied Im irA by the statistical-mechanics packing For normal incidence on slabs, g = ao + a 1, as discussed for

factor 'lV to obtain the appropriate p7, for the correlated case. (3:193). The dominant term is
The complete t 1 for spheres and slabs was given by Maxwell, 2 ' [ 2(2(-1)
and for cylinders for both polarizations by Rayleigh. 22 We ao - ix(f' - 1) 1- ' x 2 (( - 1)2, (15)
obtained c and i, from forms (3:74) and (4:52) 3

p2 1 = = ,(7) where the next terms are of order ix5 and x 4. We also re-

tain
with G as a multiple-scattering amplitude. This form with
G = g was obtained originally by Reiche23 and by Foldy 24 for at ix 1 (' _ 1)/3, (16)
spherical cases, and Lax25 derived the form in terms of a more but not ix 5, ix 7, and x 6 terms.
general amplitude than g. The function G that we require
is discussed in detail in Refs. 3 and 4. In particular for DISTRIBUTION OF SLABS
spheres, cylinders, and slabs, respectively, the systems of al-
gebraic equations (4:113), (3:92). and (3:179) determine ( = From form (3:177) we have

172 functionallyin termsofan and Fforarbitrary 'andka = G = Ao + A 1, c = i2plk = iw/x, ir = p2a = pt(a), (17)
x. Before, we kept only the electric-dipole coefficient a 1 in
these systems and considered only the leading terms of their where

imaginary and real parts, of order x - and x2m, respectively, Ao = al)(1 + Athi + A 1'H Ih?),

for lossless scatterers. Now we include terms to order x+
2

for the refractive and absorptive effects. A I = q2a I(I + At 1I/q + A '/I I /12 ), (18)

Thus, for spheres with x small, the electric dipole approx- with / = c + /o, and /io and / given as functions of k, 17,
imates 19 and F in form (3:177). This algebraic system is valid :' for all
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ka = x, but we consider only forms (15) and (16) for a,, and /H, 27rp J'FRdR + i4p f F ln(c'kR/2)RdR - IF" - I + i.V.
the corresponding leading terms of the correlation integrals /,, -i0?'"2rp/n 70 f FrdR = -irt"( )V - 1/nr,
/4,, = d,, + iN,. We have (25)

(25)

/o1 2p FdR + ik2p f FRdR - IF - 1 + ixN, where the next terms are 0(x 2). We obtain form (20)to 0(x 2)

from which

where the next terms are O(x
2 ). Substituting into the ap- = 1 + u6 + X2wr72(l + 2u + 4M/8 + i rX2

6
2U1/4.

propriate form (7) yields 6= -1. (26)

= 11 - cao(1 + ao,/Yo)](l - ca 1) (20) Here

to 0(x 2). Thus in the corresponding form (5) ' = 1 + 27rp f FRdR = 1 + 27rpF, = 1 - 8WFI,

= I + w6 
- x 2u1.62[2 - it + 3NJ/3 + ix5 2aU', W = 7rp(b/2)2 + pv(b/2) = w(b/2a)2 , (27)

6'-1, (21)
and

we require only the functions U and N.
The rigorous pair function Pf for one-dimensional impen- M = L - irX/2

etrable statistical-mechanics particles of width b was given = ln(b/a) + ' ln(2/c'kb) - 2irp f F ln(R/b)RdR

by Zernike and Prins,' and its Laplace transform was ap- ln(b/a) + IILh + 8WFi,

plied 14 in the development of a residue series. From the La- p,
place transform off as in Ref. 4, we obtain the moments of F o = - 3 F(ln u)udu. (28)
=/ - I by a Taylor-series expansion: with F(R) = F[R/b] = Flu] and L, = ln(2/c'kb).

F,, FdR = b-2 + W)/2 1 -bF 0 , We may evaluate F, and .F numerically by using tabulated
values of f or the original integral-equation approximations

V = ph =in the computing routine. To first order in W, we use the
virial expansion: F = -1 for u < 1,

F , = FRdR = -b'(1 - 4W/3 + 4/2)/2 L -b 2 l, 8W u U _ hA2l1 u (

(22) Fs -2 1 2

where the notation is the same as in Ref. 18. (The identical and F = 0 for u > 2. A closed-form approximation of 11' (and
results follow on integrating the virial expansion of F in powers consequently of Fl) was derived earlier' by differentiating the
of W.) Substituting into N' = 1 + 2pFo and N = (2p/a)F,. we scaled-particle equation of state.6 Thus we obtained'
obtain

U' = (1 - W)G/(1 + W), (30)
U' = (I - W)2, N = -(ba)W - 4W/3 + W2/2), (23) from which '1 = 1 - 4W + 7W2 + . The rigorous virial

(23) expansion to 0(W-) is

where 1' was obtained earlier' from the rigorous Tonks ' = 1 - 4W + v0 12W 2
/7r - 1 - 4W + 6.6159W2. (30')

equation of state'" (which also follows from scaled-particle
theory " ) by using statistical-mechanics theorems. For the unrealizable value W = 1, the closed-form W vanishes;

From elementary physical considerations, if b = 2a (mini- a comparable approximation of M would reduce to -:1/4 for b
mum separation of particle centers equal to particle width), = 2a and W = 1 in order for f to equal ('. The corresponding
then for u- - 1 (the limit of a uniform slab) we require that ( moments are then F, = I/s and F1 = -(In 2)/2.
= '. Since U' -- 0 an(' N - 1/2, the result (21) reduces to ( For polarization transverse to the axes we use G = All + A 1
= ', as required. + A, with A, satisfying the system (3:89). From the solution

More generally for b = 2a, the bracketed function in Eq. (3:90) and the corresponding form of )72, in terms of a, and H,/
(21) reduces to of form (3:91), to the accuracy required for present purposes,

we work with

i 2 - 7, + 8u:2 -3u'', b = 2a. (21')

- )/c = ao + (.41 + (2a2(l + .4 c/2)2; (31)

DISTRIBUTION OF CYLINDERS .41 = a /(I - a I/4 11),
2 ft 1 = c + (U'- 1) + iN -ih( )'- 1)/2ir.

For polarization along the axes, to the orders of accuracy in-

dicated for forms (12) and (13), we follow the development for where f.4 1 is a multiple-scattering coefficient that includes
slabs with all electric-dipole-dipole coupling. The coefficient a,, (es-

c = i4p/k 2 = i4u'/Irx
2
, a = = p'(a). (24) sentially the magnetic dipole) is uncoupled, and the multiplier

of the electric quadrupole a., includes all orders of electric-
where ft = (c + 'Ro, + /2)/2 in terms of the correlation in- dipole coupling to the required accuracy.
tegrals in form (3:71). We have Using approximations (10) and (11). we obtain initially
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2u((- 1) += 3w( - 1) W6

I +f-w(D- 1) + c'-w(f- D

(G - U16 (1 - b
D=1 + 2 6=-1. (32) D= 1 3 6=f'-1, (40)

with which with which

=ELiL 3+f-6[4M +fl(-1)] - xw 12 - + (2+ Af= f I- 8 2222 5 9 1

1 1( 1  + 1)2 + 8rX262U- ( 1 1 + (2f I + 3)] + ix2 6 2
UI (41)

(33) 10 5(2('+ 3) 9D 2
2 (f'+ 1) 8D

The magnetic-dipole contribution x 2 w6 l - a iMcI shows that
For b = 2a and the unrealizable value it = 1, we have DV = 1 the effects of the function in brackets in Eq. (37) have can-

and f = f'. and the result for '11 = 0 and M = -:/4 is again c = celed.
By differentiating the scaled-particle approximation 6 for

For comparison with form (26), say, cl. we have to 0(62) for the equation of state, we showed thatI- 7

the present (,, 
1W = (1 - W)4/(1 + 2W)2, (42)

1 + w5 - wti - o)62/2 + x
2 .r62

(1 + 2w + 4M + 'W)/16 which also follows from the Percus-Yevick approximation.7

+ i'rx
262 u' lt/8. (34) The first moment F, obtained" from the Wertheim-Thiele

solution of the Percus-Yevick integral equation7 gives the

The corresponding bipolarization2 is closed form

,- u(1 - wl) 2/2 + x2wMj6(1 + 2w + 4M - 1)/16 2a 6W W W2

+irx 2 62 wW/8, (35) b 1+2W 5 10)

and we may obtain higher-order terms in 6 from Eq. (33). Although the physically realizable range corresponds to W <

Wd z 0.63, we see that, for b = 2a and the unrealizable value
w = 1, it follows that 1 = 0 and N = 9/5; then . as was

DISTRIBUTION OF SPHERES discussed for slabs and cylinders.

For spheres we use form (7) with For comparison with forms (21), (26), and (34), we have to
0(62) for the present case of the sphere

G = A, + AlM + A 2. c = i4irp/k :l = i3/X
3

, F1 + u,b - u,(1 - .)h2/3 + x 2
1'

2[6 + 3w - 5N]11/(15)2

to = p4 ra/3 = pL(a), (3 + ix:2 25
2u'W/9. (44)

with the A's satisfying the system (4:113) in terms of the iso- For b = 2a, the function in brackets reduces to

lated coefficients a. and the correlation integrals '/., of form
(4:80) or (3:148). Introducing the low-frequency forms (3: ] = 3(2 - 5w + 4w2 - w)/(1 + 2w). (44')
149), we sulve the system and obtain

-q2 -1)/C = 77
2
_1 + 1 2am + A lc(1 + 1)12 BULK INDEX OF REFRACTION

+ 77
4
a 2 (1 + 4 c3/5) 2; We write forms (21), (26), (33), and (41) collectively as

,A = a,/( - a]H1), ( = (I + u,6
2
P(x2 ) + jwb 2S(x'=), 3 -(I - 1, (45)

31= 2 c + 2 co + '/12 2c + 2(1' - 1) P and S, proportioned to X
2 and x"-, are obtained by

+ iN(2 + 112/5)/x, (37) . ction. The k-independent term

with (1 =1 + w6/(1 + D), D = (1 - w)Q,

Q= =Q2=, Q2t = /2, Qi = /. (46)

11' = 1 + 4irp FR 2 dR = I + 4rpF 2 = I - 24WF2 , represents special cases of the result for ellipsoids.2 The

corresponding S for ellipsoids is also known,2 and form (45)
W = p4nrib/21'l/3 = p'(b/2) = w(b/2a)' , (38) holds for all small dielectric particles (discounting a resonant

and multipole).
The corresponding bulk index of refraction may be

N = -4rpa FRdR = -4rpaF, = 24(a/b)WP,. (39) written

q = if, + wb(P + iS)1l/2 , + 1o5,62P + iS)/2, 147)

Here 17.,A ,/a1 includes all electric-dipole-dipole coupling, and with ill = ( I-. More generally, we write = , + it, and 77

the multipliers of the magnetic dipole aiM and the electric r7 + i 1,,
quadrupole a2 incorporate multipole coupling with all orders rI

of electric dipoles to the required accuracy. r} = } '-.+(48)
Using approximations (12) and (13). we obtain initially mt 2
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In terms of A = ( - 1, we obtain form (2:3), so that part of the P 2t = x 2 (1 + 2u, + 4M + W)/16 = P2 1/2 + x 2
W/16,

earlier development is appropriate. S2, =  2W18 = $21 (59)
In particular, if we retain eI to 0(P : ) and P and S to 0 "),

then with M and 'W as in forms (25)-(30). For spheres,

(f - 1)/w = A/u = 6( - 5D + 62D 2
) + 62(P + iS) (49) D 3 = (1 - w)13, A3 = -(1 - w)/3,

is correct to 0(63), O(x-6), and iO(xm6 2). For complex 6 = 6, B, = -1 - u,)(4 + 5w)/9, (60)

+ il, we construct A = A, + iA, essentially as for form (2:25)
with the earlier iS replaced by iS + P hut retain only the
leading term of the earlier 5:6 contribution. Thus with N and 'W as in forms (38), (39), (42), and (43).

+ 6,22) + 6, 21)(1 - 36,D) For cylinders, the values of E' and Yj' for the lateral and
transverse cases may differ, and the corresponding birefren-

- 26AS + (6,.2 - (5,2)P (50) gence (mili - ?,) will then display intrinsic as well as form ef-

and fects. See Ref. 2 for details. The relations A 2t = -A 2 and
A,l , I - 2 6,) + (315r2 - (5,

2 )D21 B 2t = B 2 1 simplify considerations. In particular, if there isAIw a common v, then

+ (6,1 - 6,2)S + 25r ,1. (51)

The terms in P account for the 0(k 2 ) corrections indicated for ) - ?It = wT2 [A, + PI - X2 WI16 + IS,]

forms (2.22) ff. If 6, = 0. then A, is independent of S. and A = wV
2
[1 - W + X

2
(1 + 2W + M - 14)/16

of P. + i7rx W/41 - V2(R + il). (62)
Similarly in terms of I, = r' - I with q' / we write 5
1,11 - 1 (2 + I,) and express ,l - I to 0(,3). 0(x 2v 2 ), and Then the birefrengence corresponds to

i0 X as Re071 - 77t) = (V,2 
- ',2 )R - 2vvj1 (63)

(77- l'w = P, + v'-(A + 411 + i4S)/2 + v:13/2, and the dichroism to

.4 =1 - (w + 41)), B = -(I -w)(u + 41) + 8D 2
. (52)

For complex v = j,, + it,, we construct I) = q, + i77, essentially 1m(07 - Ut) = 2vrt,,R + (v,2 - t, )I. (64)

as for form (2:28). Thus the refractive contrast 7, - 1 is given For experiments in which , is varied, we introduce the vari-
by able 0 = ( ,,)- / r/%, and the constant ju = llp/1lp, to con-

q - lu = tr 1 + v,A/2 + ,,28/2) - i,, 2
(A + 3v,'B)/2 struct v = (- + ip)i(1 + ). For small . we have

- 41,,vS' + 2(1-, - v,"2[. (53) Re(qh, - 1bt)/lqpr - [( 2 - ii)R + 2kAI](1 - ). (65)

and the net attenuation is determined by Im(7t, - rTt)/qp,- [-2,uR + (42 - p
2

)I1(1 - ), (66)

q/,/1 = ,, [1 + v,A + (:1,,2 - I,-)B/2) which generalize the result in form (1:67).
+ 2{0', 2 

- ,,2) + 4v,IP. (54)

If the 2catterers are lossless 0', = 0), then qj, does not depend ACKNOWLEDGMENT
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